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Introduction

Response-Adaptive Randomization

Response-adaptive randomization (RAR) procedures use the accruing information in the

course of a clinical trial to change the allocation probabilities sequentially with the goal

of assigning more patients to the better treatment

Two treatments: A and B

n patients enter the trial sequentially and must be randomized to either A or B

Randomization sequence:

Tn = (T1, ...,Tn)′, Tj = 1, if A; = 0, if B

Patients’ responses: Yn = (Y1, ...,Yn)′

Statistical model:
E(Yn) = f (θ|Tn)

RAR procedure:

φj+1 = Pr(Tj+1 = 1|Tj ,Yj), j = 1, 2, ..., n − 1
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Introduction

Response-Adaptive Randomization for Survival Trials

Why implement RAR in survival trials?

Outcomes are grave, hence it is ethical to assign more patients to a better
treatment, if one exists

It turns out in the survival response case allocations maximizing statistical
efficiency are also skewed towards the better treatment

Hence, more subjects may wish to participate

Large sample sizes, hence asymptotic results apply

What are potential difficulties?

Primary outcomes are time-to-event (PFS, OS), thus inherent delays in responses

Recruitment may terminate before sufficient number of responses accrue to start
benefiting from adaptation

Censored data

Logistical complexity, regulatory concerns
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Introduction

Survival Trials: Optimal Allocations

Consider a survival trial comparing two treatment arms, A and B

Tk =survival time, exponential with mean θk

C =censoring time

tk = min(Tk ,C) and δk = 1{tk=Tk}

Based on samples of nA and nB patients, the m.l.e.’s are

θ̂k =

∑nk
i=1 tik∑nk
i=1 δik

=
t

r
, k = A,B

It can be shown that

E(θ̂k) = θk , var(θ̂k) =
θ2k
nkεk

,

where εk = Pr(Tk ≤ C) =prob. of death before censoring
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Introduction

Zhang and Rosenberger (2007, JRSS C) derived an optimal allocation from
minimizing a weighted sum of sample sizes subject to constraints on the variance:

min nAu(θ) + nBv(θ),

s.t.
θ2A
nAεA

+
θ2B

nBεB
≤ V .

If u(θ) = v(θ) = 1, then one has nA/nB = θA
√
εB/(θB

√
εA) - Neyman allocation

minimizing total sample size of the study

If u(θ) = θ−1
A , v(θ) = θ−1

B , then one has nA/nB =
√
θ3AεB/

√
θ3BεA - “ethical”

allocation minimizing total expected hazard in the study

Note that optimal allocations depend on (θA, θB , εA, εB), which must be
sequentially estimated, and a RAR can be used to “target” the desired allocations.
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Introduction

Sverdlov and Tymofyeyev (2009) generalized to K ≥ 2 treatments:

Consider 2 distinct approaches to optimal allocations:

DA-optimal design

Nonlinear programming optimal allocation rules

Construct sequential RAR procedures to approach optimal allocations in the limit

Compare the designs in terms of:

Variability
Imbalance
Power

Ethical criteria (number of deaths and total hazard)
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Optimal Allocations for a K -Treatment Survival Trial

Optimal Allocations for K ≥ 2-Treatment Survival Trial

We are interested in comparing (K − 1) experimental treatments to a “control”

nk - number of patients on treatment k = 1, ...,K , and
∑K

k=1 nk = n

A trial has recruitment period of fixed length R > 0 months, and the total
duration D > R months

In the kth group one observes tk = min(Tk ,C ,D − U) and δk = 1{tk=Tk}, where

Tk = survival time, exponential with mean θk

C = censoring time, uniform over (0,D)

U = patient arrival time, uniform over (0,R)

Let θ = (θ1, ..., θK ).Given the responses (tik , δik), i = 1, ..., nk , k = 1, ...,K , we
want to test

H0 : ATθ = 0 vs. HA : ATθ 6= 0,

where AT is a (K − 1)× K matrix of contrasts s.t. ATθ = (θ2 − θ1, ..., θK − θ1).
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Optimal Allocations for a K -Treatment Survival Trial DA-Optimal Allocation

DA-Optimal Design

A DA-optimal allocation vector ρ∗ = (ρ∗1 , ..., ρ
∗
K ) minimizes det{ATM(ρ,θ)−1A}

over the set of probability distributions on the K -treatment design space.

ρ∗ is found using directional derivatives from the system of equations:

dA(k) =
1

ρk
− εk/θ

2
k∑K

k=1 ρk(εk/θ2k)
= K − 1, k = 1, ...,K . (1)

Result 1: Assume that θ1 ≥ θ2 ≥ ... ≥ θK and εk is a decreasing function of θk for
each k = 1, ...,K. Then, for the DA-optimal allocation solving (1), one has
ρ∗1 ≥ ρ∗2 ≥ ... ≥ ρ∗K . In addition, 0 ≤ ρ∗k ≤ 1/(K − 1) for k = 1, ...,K .

Hence, DA-optimal design is always “ethical” in the sense that it allocates greater

proportions of subjects to more efficacious treatments
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Optimal Allocations Based on Nonlinear Programming

Define θC = (θ2 − θ1, θ3 − θ1, ..., θK − θ1). We are interested in testing

H0 : θC = 0 vs. HA : θC 6= 0

using Wald’s test statistic

Wn = θ̂
T

C Σ̂
−1

n θ̂C

Wn is asymptotically (as nk →∞) chi-square with K − 1 degrees of freedom and
noncentrality parameter

φ(n1, ..., nK ) = θT
C Σ−1

n θC ,

Σn =


θ22
n2ε2

0 · · · 0

0
θ23
n3ε3

· · · 0

· · · · · 0

0 0 · · · θ2K
nK εK

+
θ21
n1ε1

11T ,
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Following Tymofyeyev et al. (2007, JASA), we can formulate two optimization problems:

Problem 1: 
minn1,...,nk

∑K
j=1 wjnj ,

s.t. nk
/∑K

j=1 nj ≥ B, k = 1, ...,K ,

φ(n1, ..., nK ) ≥ C ,

Problem 2: 
maxm1,...,mk φ(m1, ...,mK ),

s.t. mk

/∑K
j=1 mj ≥ B, k = 1, ...,K ,∑K

j=1 wjmj ≤ M,

where B ∈ [0, 1/K ] is a minimum desired proportion of patients for each treatment

group
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

It is easily checked that φ(n) is strictly concave and ∇φ > 0

By Theorem 1 of Tymofyeyev et al. (2007), there exist the unique solutions to
both Problems 1 and 2.

Moreover, let n∗ = (n∗1 , ..., n
∗
K ) be the optimum for Problem 1, and

m∗ = (m∗1 , ...,m
∗
K ) be the optimum for Problem 2. Then one has

n∗k∑K
j=1 n

∗
j

=
m∗k∑K
j=1 m

∗
j

= ρ∗k , k = 1, ...,K .

Note : Problem 2 is a nonlinear optimization problem with linear constraints, which can

be easily solved using optimization software
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Choices of the vector of weights w:

If w = (1, ..., 1), then we are maximizing power of Wald’s test for a total sample
size n s.t. the proportion of patients in each treatment group is at least B.

If w = (θ−1
1 , ..., θ−1

K ), then we are minimizing the total expected hazard in the trial
s.t. the constraints on B and φ(n)

If w = (ε1, ..., εK ), then we are minimizing the expected number of deaths in the

trial s.t. the constraints on B and φ(n)

Note : For w = (1, ..., 1), we have the analytical form of the optimal solution. It will be

referred to as NP-optimal allocation
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Allocation Surfaces

Consider K = 3 treatments, R = 55 and D = 96, 5 ≤ θA ≤ 35, 5 ≤ θB ≤ 35, θC = 17.
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Figure: Allocation surfaces ρA(θA, θB , 17) for the DA-optimal allocation (left plot)
and the NP-optimal allocation with B = 0.2 (right plot)
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Operating characteristics of the designs:

DA-efficiency: Given a DA-optimal design ξ∗, the DA-eff. of any other design ξ is
defined as

E(ξ) =

{
|ATM−1(ξ∗)A|
|ATM−1(ξ)A|

}1/(K−1)

A value of E(ξ) = 0.95 means that design ξ is 95% as efficient as ξ∗.

Balance: Euclidean distance between a vector of allocation proportions and the
vector of uniform probabilities (1/K , ..., 1/K).

Power of Wald’s test

Difference in proportions of deaths
∑K

k=1 ρkεk between the balanced allocation and
an optimal allocation
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Theoretical Comparison of Design Characteristics

Consider K = 3 treatments, R = 55 and D = 96, θA = 8, θB = 17, 2 ≤ θC ≤ 34.
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Figure: Interplays between DA-efficiency, balance, power, and ethics
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Implementing Response-Adaptive Randomization to “Target” Optimal
Allocations
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Optimal allocations depend on unknown model parameters

Given data from the first (j − 1) patients: Tj−1 and Yj−1, compute

ρ̂(j − 1) = (ρ̂1(j − 1), ..., ρ̂K (j − 1)) estimate of the target allocation

Ni/(j − 1), i = 1, ...,K current treatment proportions

Randomize the jth patient to treatment k with probability (Doubly-Adaptive
Biased Coin (DBCD), Hu and Zhang (2004), Ann. Statist.)

ψjk =
ρ̂k(j − 1)

(
ρ̂k (j−1)
Nk/(j−1)

)γ
∑K

i=1 ρ̂i (j − 1)
(
ρ̂i (j−1)
Ni/(j−1)

)γ , k = 1, ...,K ,

where γ ≥ 0 is a parameter controlling the degree of randomness of an allocation

procedure.
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Role of γ:

γ = 0 (the highest variability). One has sequential maximum likelihood procedure

ψjk = ρ̂k(j − 1), k = 1, ...,K .

γ =∞ (the smallest variability). The procedure is almost deterministic:

ψjk = 1, if treatment k has maximum value of
ρ̂i (j − 1)

Ni/(j − 1)
, i = 1, ...,K ,

= 1/s, if s treatments are ties in terms of
ρ̂i (j − 1)

Ni/(j − 1)
, i = 1, ...,K ,

= 0, otherwise

γ = 2 is recommended for use in practice (Rosenberger and Hu, 2004)
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

Asymptotic properties of the DBCD procedure:

Hu and Zhang (2004) (assuming that responses are immediate) showed that if the
allocation vector ρ = ρ(θ) is continuous ∀θ, and ρ is twice cont.-diff. in a
neighborhood of the true θ∗, then as n→∞

N(n)/n→ ρ∗ a.s.
√
n(N(n)/n − ρ∗)→ N(0,Σ) in distribution,

where ρ∗ = ρ(θ∗) and Σ is a known expression.

Hu et al. (2008) justified the above asymptotic properties of the DBCD procedure

for cases when responses are moderately delayed (e.g. exponential delays)
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Optimal Allocations for a K -Treatment Survival Trial Optimal Allocations Based on Nonlinear Programming

In our case:

ρ for DA-optimal allocation is nice and smooth, and hence asymptotic results of
Hu and Zhang (2004) apply

ρ for NP-optimal allocation is discontinuous for certain values of θ. We “smooth”
ρ using a standard K -variate Gaussian kernel as follows:
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and target the “smoothed” NP-optimal allocation using the DBCD procedure
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Simulation Results

Simulation Study

3 procedures:

Complete randomization (CRD)
DBCD with γ = 2 targeting DA-optimal allocation (DA)

DBCD with γ = 2 targeting “smoothed” NP-optimal allocation (NP)

K = 3 treatments, R = 55 months, D = 96 months

Two choices of θA (“control” treatment):

θA = 8.5 (“poor” survival); εA = 0.91

θA = 24 (2-year survival); εA = 0.74

Sample size n is chosen s.t. CRD has 90% power (when θA = 8.5), or 80% power
(when θA = 24) under a given alternative

10000 simulations of a trial with n patients for each experimental scenario using R
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Simulation Results

Table: Theoretical optimal designs for DA-optimal allocation (DA), and a
Gaussian-smoothed nonlinear programming optimal allocation (NP) with B = 0.2

Scenario n (θA, θB , θC ) DA NP

Ia 136 (8.5, 17, 17) (.22, .39, .39) (.32, .34, .34)
IIa 162 (8.5, 8.5, 17) (.29, .29, .43) (.20, .20, .60)
IIIa 84 (8.5, 25, 17) (.19, .44, .37) (.23, .57, .20)
IVa 136 (8.5, 8.5, 8.5) (1/3, 1/3, 1/3) (1/3, 1/3, 1/3)

Ib 516 (24, 34, 34) (.26, .37, .37) (.40, .30, .30)
IIb 567 (24, 24, 34) (.30, .30, .40) (.20, .20, .60)
IIIb 213 (24, 48, 34) (.24, .42, .34) (.26, .54, .20)
IVb 516 (24, 24, 24) (1/3, 1/3, 1/3) (1/3, 1/3, 1/3)
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Simulation Results

Table: Simulated allocation proportions N/n = (NA/n,NB/n,NC/n) and their
standard deviations (S.D.)

Scenario CRD DA NP
(% resp.)

Ia (77%) N/n (.33, .33, .34) (.28, .36, .36) (.29, .36, .35)
S.D. (.04, .04, .04) (.04, .04, .04) (.04, .09, .09)

IIa (81%) N/n (.33, .33, .34) (.31, .31, .38) (.27, .26, .47)
S.D. (.04, .04, .04) (.03, .03, .03) (.05, .05, .07)

IIIa (74%) N/n (.33, .33, .34) (.28, .37, .35) (.27, .41, .32)
S.D. (.05, .05, .05) (.05, .05, .05) (.05, .10, .09)

IVa (85%) N/n (.33, .33, .34) (.33, .33, .34) (.33, .33, .34)
S.D. (.04, .04, .04) (.04, .04, .04) (.07, .07, .07)

Ib (63%) N/n (.33, .33, .34) (.31, .35, .35) (.32, .34, .33)
S.D. (.02, .02, .02) (.02, .02, .02) (.04, .06, .06)

IIb (65%) N/n (.33, .33, .34) (.32, .32, .36) (.31, .30, .39)
S.D. (.02, .02, .02) (.02, .02, .02) (.05, .05, .06)

IIIb (60%) N/n (.33, .33, .34) (.30, .36, .34) (.29, .40, .31)
S.D. (.03, .03, .03) (.03, .03, .03) (.04, .08, .07)

IVb (63%) N/n (.33, .33, .34) (.33, .33, .34) (.33, .33, .34)
S.D. (.02, .02, .02) (.02, .02, .02) (.05, .05, .05)
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Simulation Results

Table: Power and error rates

Scenario n CRD DA NP-1

Ia 136 0.902 0.891 0.891
IIa 162 0.902 0.919 0.942
IIIa 84 0.897 0.905 0.903
IVa 136 0.044 0.054 0.051

Ib 516 0.805 0.799 0.796
IIb 567 0.801 0.821 0.820
IIIb 213 0.801 0.816 0.823
IVb 516 0.049 0.048 0.050
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Simulation Results

Table: Total number of deaths in the study (S.D.)

Scenario CRD DA NP-1

Ia 115 (4) 115 (4) 115 (4)
IIa 142 (4) 142 (4) 140 (4)
IIIa 69 (4) 68 (4) 68 (4)
IVa 124 (3) 124 (3) 124 (3)

Ib 349 (11) 348 (11) 349 (11)
IIb 402 (11) 400 (11) 398 (11)
IIIb 137 (7) 135 (7) 134 (7)
IVb 382 (10) 382 (10) 382 (10)
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Simulation Results

Table: Total hazard (in patients per months) in the study (S.D.)

Scenario CRD DA NP-1

Ia 10.9 (1.1) 10.5 (1.0) 10.5 (1.1)
IIa 16.1 (1.5) 15.7 (1.4) 14.9 (1.4)
IIIa 6.3 (0.9) 5.9 (0.8) 5.8 (0.8)
IVa 16.4 (1.5) 16.4 (1.5) 16.4 (1.5)

Ib 17.4 (0.9) 17.2 (0.9) 17.3 (1.0)
IIb 21.4 (1.1) 21.2 (1.1) 21.0 (1.1)
IIIb 6.6 (0.6) 6.5 (0.6) 6.4 (0.6)
IVb 21.6 (1.1) 21.6 (1.1) 21.6 (1.1)
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Redesigning a Phase III Survival Trial

Redesigning a Phase III Survival Trial

A randomized phase III clinical trial to compare the 3-yr survival rates of patients
with locally advanced head and neck cancer (HNC) treated with standard
fractionated RT alone (arm A) or RT+cisplatin (arm B) or RT+carboplatin (arm
C) (Fountzilas et al. (2004) Medical Oncology 21(2), 95-107)

From Jan-1995 to Jul-1999, n = 124 patients with proven locally advanced HNC
were equally randomized to treatments using stratified blocks (randomization was
centralized)

A(n = 41) B(n = 45) C(n = 38)

Died 36 23 23
Censored(%) 5 (0.12) 22 (0.49) 15 (0.39)

Survival rate at 3 yr (%) 17.5 52.0 42.0
Survival rate at 5 yr (%) 9.0 52.0 38.0
Median TTP (months) 6.3 45.2 17.7

OS (months) 12.2 48.6 24.5

A.Sverdlov (B-MS) Response-Adaptive Randomization 29 / 35



Redesigning a Phase III Survival Trial

Given this data, assume that ITT survival times are exponentially distributed with
means θA = 8.5, θB = 34, and θC = 17

Trial duration D = 96 months, recruitment period R = 55 months

Theoretical DA-optimal design is ρ∗(θ) = (0.18, 0.46, 0.36)

Theoretical “smoothed” NP-optimal design is ρ∗(θ) = (0.20, 0.60, 0.20)

Simulate 10000 trials with n = 124 patients and 3 randomization procedures
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Redesigning a Phase III Survival Trial

CRD DA NP
n = 124

N(n)/n (.33, .33, .33) (.27, .39, .34) (.26, .46, .28)
S.D.(N(n)/n) (.04, .04, .04) (.04, .04, .04) (.04, .09, .08)
D(n) (S.D.) 98 (5) 96 (5) 94 (5)
H(n) (S.D.) 8.7 (1.0) 8.0 (0.9) 7.7 (1.0)
Power > 0.99 > 0.99 > 0.99

n = 66

N(n)/n (.33, .33, .33) (.28, .38, .34) (.26, .43, .31)
S.D.(N(n)/n) (.06, .06, .06) (.05, .05, .05) (.05, .10, .09)
D(n) (S.D.) 52 (3) 51 (3) 50.5 (4)
H(n) (S.D.) 4.8 (0.8) 4.4 (0.7) 4.3 (0.7)
Power .900 .920 .932

n = 63

N(n)/n (.33, .33, .33) (.28, .38, .34) (.26, .43, .31)
S.D.(N(n)/n) (.06, .06, .06) (.06, .06, .05) (.05, .10, .09)
D(n) (S.D.) 50 (3) 49 (3) 48 (3)
H(n) (S.D.) 4.5 (0.8) 4.2 (0.7) 4.1 (0.7)
Power .880 .900 .917
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Conclusions

Conclusions

The DBCD procedures targeting optimal allocations assign greater proportions of
patients to more efficacious treatments

On average, these procedures result in 1− 4 fewer deaths, and smaller total hazard
than the balanced design

Also, in most of the cases, for a given sample size these procedures are 1%− 3%
more powerful than the balanced design

Under H0, all procedures reduce to the balanced allocation

Overall conclusion: The DBCD procedures can be good alternatives to the balanced

designs in clinical trials with grave outcomes, such as in survival trials. The total sample

size can be reduced without sacrificing power, which implies extra savings in the study

cost, reduction of the risk of exposing subjects to less efficient therapies, and reduction

of the total number of deaths in the trial.
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Conclusions

Possible Extensions

Optimal allocations for other response distributions, such as Weibull, or lognormal

Incorporating covariates and developing covariate-adjusted response-adaptive
(CARA) randomization procedures

Bivariate response (efficacy + toxicity) in application to dose-finding (phase II)
survival trials
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Conclusions

Thank You for Your Attention!
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Conclusions
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